On the internal path length of d-dimensional quad trees
نویسندگان
چکیده
It is proved that the internal path length of a d–dimensional quad tree after normalization converges in distribution. The limiting distribution is characterized as a fixed point of a random affine operator. We obtain convergence of all moments and of the Laplace transforms. The moments of the limiting distribution can be evaluated from the recursion and lead to first order asymptotics for the moments of the internal path lengths. The analysis is based on the contraction method. In the final part of the paper we state similar results for general split tree models if the expectation of the path length has a similar expansion as in the case of quad trees. This applies in particular to the m-ary search trees.
منابع مشابه
The total path length of split trees
We consider the model of random trees introduced by Devroye [SIAM J Comput 28, 409– 432, 1998]. The model encompasses many important randomized algorithms and data structures. The pieces of data (items) are stored in a randomized fashion in the nodes of a tree. The total path length (sum of depths of the items) is a natural measure of the efficiency of the algorithm/data structure. Using renewa...
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملProper generating trees and their internal path length
We find the generating function counting the total internal path length of any proper generating tree. This function is expressed in terms of the functions (d(t), h(t)) defining the associated proper Riordan array. This result is important in the theory of Riordan arrays and has several combinatorial interpretations.
متن کاملNote on the Weighted Internal Path Length of b-ary Trees
In a recent paper Broutin and Devroye (2005) have studied the height of a class of edge-weighted random trees. This is a class of trees growing in continuous time which includes many well known trees as examples. In this paper we derive a limit theorem for the internal path length for this class of trees. The application of this limit theorem to concrete examples depends upon the possibility to...
متن کاملEntropy Quad-Trees for High Complexity Regions Detection
This paper introduces entropy quad-trees, which are structures derived from quad-trees by allowing nodes to split only when those correspond to sufficiently complex sub-domains of a data domain. Complexity is evaluated using an information-theoretic measure based on the analysis of the entropy associated to sets of objects designated by nodes. An alternative measure related to the concept of bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Random Struct. Algorithms
دوره 15 شماره
صفحات -
تاریخ انتشار 1999